SIZE INDEPENDENT IMPLEMENTATION OF MATRIX
OPERATIONS ON TASA - A TWO-DIMENSIONAL ARRAY
MATRIX ARCHITECTURE

Hai Van Dinh Le, and Marek A. Perkowski
Department of Electrical Engineering, Portland State University,

ABSTRACT

A Two-dimensional Array Systolic Architecture (TASA) is a general-
purpose parallel computer for solving a wide class of computationally inten-
sive problems. Application of TASA to implement Faddeev algorithm for
classical matrix algebra operanons was shown in [3]. It is presented below
that this i isp size independent for Faddev algorithm.,

Nearly 75% of computer applications involve some kind of matrix manipulation. Faddev
algorithm [1] is a base of several new and highly parallel architectures for general purpose
matrix operations [2,4,5]. In [3] an implementation of Faddev algorithm with TASA has
been introduced that has several advantages over the algorithms from {2,4,5]. They include:
better performance for smaller cost, easy reconfigurability, maximum overlaps between con-
secutive computations, processing of sparse arrays, and increased throughput for several
extensions to Faddeev algotithm. What is most important, TASA (Fig. 1) uses a mesh struc-
ture suitable for very many other CAD algorithms, in contrast to the well-known Faddev and
other matrix architectures that require various and exotic structures. It will be shown that
TASA is truly problem size independent, i.e. matrices which are arbitrarily large can be
easily decomposed to be processed by a fixed size array.
Solving Size Independent Problems.
Faddeev’s algorithm calculates C A™ B + D from

AB @1

-CD

Since the underlying procedure to carry it out is matrix triangularization, any systolic imple-
mentation of the algorithm should be based on a structure which can perform triangulariza-
tion efficiently. The triangular systolic array developed by Gentleman and Kung as a com-
mon platform for two different triangularization methods can execute both Gaussian elimi-
nation with neighbor pivoting or orthogonal triangularization. The array consists of two
types of cells: the boundary cells (represented by circles) and the internal cells (represented
by squares). Each cell stores a microprogram. enabling it to interact with its neighbors in
such a way that a triangularization procedure can be carried out. Changing the micropro-
grams of the cells (Fig. 2) allows TASA to execute different procedures. TASA reduces the
1/O bandwidth requirement by half and the number of cells needed by more than one third,
comparing t0 {2,4,5]. Functionally, there are two types of cells. The first type consists of all
the diagonal cells (circles) of the array and the second type of all the non-diagonal cells
(squares). Depending on the actual processing phase, the array functions in one of the two
modes : the T (triangular) mode or the S (square) mode. When the array is in T mode, cells
of rows i where i = 1, 2, .., w and columns j where j 2 i, form a mangular sub-array which is
based on Gentlemen and Kung's array. It performs Gaussi ination with neighb
pivoting on A, and ordinary Gaussian elimination on C. When in S mode, the entire array is
used to process B and D. In this mode, every cell of the array acts similarly to the internal
cell i.e. circular cells functionally become square cells. In order to switch the array from one
mode 1o another, it is only necessary to change the program of the diagonal cells.
The circular cell relies on three extemal control signals C1, C2, and C4 (binary) for internal

Portland, OR 97207, tel. (503) 725-3806.

1 is decomposed into smaller strips which are processed continuously by the array, one atter
another. The intermediate results from each strip will then be fed back to the array for
further processing. This vertical feedback and the horizontal feedback of the modification
factors itute two di ional feedback paths for the array.

Input Decomposition and Vertical Feedback Path,

With matrices of size n where B is m times the available bandwidth w , (2.1) can be
parallely decomposed into 2m strips, each w in width and 2n in length as in [2]. Each strip
in turn consists of 2m w X w blocks which are of the same size as the array.

Forw =2,n=4and m = 2, Fig. 1 shows an array with its input data flow decomposed
parallely into four strips numbered from V, to V,. These sirips are processed by the array
one after another continuously. Note that the strips of intermediate results all have leading
blocks of zeros. The procedure begins with the array set to T mode as V, arrives. While V,
is being processed, a horizontal data slream consisling of values M,,, and signals C3 is gen-
erated and moved ri into B,. , the array is swnched to S mode for the
computation of the remaining smps. Vo V.. In I!us mode, the contents of B, is recircu-
lated back to the array as vertical data of each strip arrive, thus ensuring p: mger processing.
As shown in Fig. 1, each input strip V;, V;, V, generates an output strip V3", V{», V§?, of
length (2m - 1)w = 6 that is preceded by a block of zeroes as it emerges from the array. In
Fig. 3, these intermediate results are stripped of their zero blocks and then fed back to the
array where the above procedure is repeated. The final results, strips £, and £,, come out
from the bottom of the array, each (2m - 2)w = 4 in length and likewise, is preceded by a
zero block. are stripped of their leading blocks of zeroes before re-entering the array.

Fig. 4 shows a mapping of input and output data flow of each iteration to array execu-
tion steps. The dash/dotted lines represent input strips, while the dotted lines represent the
output strips. Notice that input data flow of the second iteration is optimized, i.¢. zero blocks
that exist between output strips of the first iteration are eliminated. In general, a w X w array
will solve a problem whxch is decomposed into 2m strips of length 2mw and width w, in m
iterations. During the i® iteration, where i = 1, 2, ... , m, the array eliminates the strip V; (in
T mode) and reduces the length of each of the remaining strips by w (in § mode). This is
because each remaining strip leaves behind one w x w block of data in the X registers as it is
being processed by the array, and subsequently emerges with a w x w block of zeroes
preceding it. These zero blocks can be skipped in the next iteration 1o shorten processing
time without incurring any error. Final results after the m™ iteration consists of m strips,
each mw in length and w in width.

The number of steps needed for the array of Fig. 1 to compute C A™ B + D is:

@w =1+ T 2m -k + 1P w=7/3(mn) + 3/2(mn) + 1/6(n) + 2w ~ 1 = O (m*n)
k=1
Controls and Horizontal Feedback Path
In Fig. 4, values of C1, C2, and C4 necessary for the above example are illustrated at each
step. C3 is not shown since it is dependent on input data and generated on the fly by the
diagonal cells. For each control signal, a 1 represents the boolean value frue and 0
false; when a signal remains unchanged from its previous value, a dash (-) entry is

putation. Itself, it signal C3. All those binary signals are broad d locally TP
by a cell to its neighbors. The square cell passes received control signals C3, C4 to neigh-
boring cells in unchanged form. C1 controls the behavior of diagonal cells and ¢ quently

entered. The pattern is as follow: for each iteration, C1 is true during the first strip and false
the ining strips. C2 is rue only where pivoting is allowed, i.. the portion of

selects the operation mode of the array. When C1 is zrue, the diagonal cells execute the por-
tion of their code that enables them to function like Kung’s boundary cells and the array is in
a T mode. Otherwise, with C1 faise, diagonal cells function like square cells, and the array
is in the § mode. Because of the strict timing required, mode switching should occur as
entries of the first row of B reach each cell, i.e. the switching sweeps across the array in
skewed waves as the transition berween C and B flows through the cells. This can be accom-
plished without the need to address separate control signals to each individual diagonal ceil.
As the data flow changes from matrix A to matrix C, T mode proccssmg in the an'ay gradu-
ally switches from Gaussian elimination with pivoting to -p g G

This event is started with C2, whose value is true for pivoting allowed and false for pivoting
not allowed.

Generated internally by diagonal cells when they are in T mode, C3 is the functional
equivalent of M ,,, of the boundary cell. It is thus used to direct square cells on the same
row to pivot incoming data when true, or not to pivot when false. When switching between
the T and S modes of operation, it is essential that the X registers in each and every cell of
the array are cleared 1o zero before the new data elements arrive. If C4 is rrue, a cell will
clear its X register prior to receiving X ;, from its northem neighbor. The X register remains

the first strip which contains data elements of matrix A, and false anywhere else. C4 clears
the X registers of the array each time a new strip arrives, therefore it is true at the first step of
each strip and false elsewhere.

In general, an input strip with N blocks of vertical data will generate a corresponding N
blocks of horizontal modification factors pairs (M, and C3); thus, the storage of the hor-
izontal data stream should be N blocks long so that timings for horizontal feedback are accu-
rate. Because the array itself acts as a w x w block of storage, for each i** iteration, the FIFO
queue B, should be (2 — i)w long. With m = 2 and w = 2, Figs. 1,3 show the correspond-
ing length of B, for each iteration.

The buffer B, should have the addressing capability such that its length can vary in units of
blocks. This permits the array to solve problems of arbitrary size, as long as B, maximum
length is adequate for the largest of them.

Multiple Arrays Configurations.

Even though both have throughput time 0(m?n), the parallel decomposition system from [2]
is slightly faster when compared to the array from Fig. 1. (Let us observe that the system
from [2] cannot solve problems with m > 4), Given a problem, the former will solve it with
steps lcss than the latter. This stems from its use of two subarrays, where some overlaps in

unchanged if C4 is false. A virtue of TASA i |s rhal it can readily handle probl of arbi-
trary size without requiring any archi ion, while the h gt can be

P are possible when the S array is working on a strip while the T array processes

p

improved proportionally by adding any number of arrays to the existing system. This gives
the array a degree of flexibility that makes it truly useful in real life implementation: perfor-
mance is adjustable according to cost constraint while versatility is preserved regardless of
expansion of any size. For problems larger than array size, the input data flow shown in Fig.

results from the previous strip. Likewise, by using multiple arrays, the system
of Fig. 5 gives better throughput than the single array of Fig. 1 under the same I/O constraint.
This is hemuse each subarray effectively replaces one iteration, with partial results from one

diatel d by the next, thereby maximizing concurrency while elim-
inating the correspondmg iteration. Such a system will be called L - tuple arrays system (L

CH2799-5/90/0000/0889$01.00 © 1990 IEEE 889

=2 in Fig. 5), or L-subarrays system. Again w =2, n =4 and m = 2. The problem is solved
in one iteration. In Fig. 6, control and timing of Fig. 5 are ill
Because the input strips V" of the second array are interspersed by blocks of zeroes which
cannot be removed, buffer B 2, is required to have the same length as B 1, instead of being
one block shorter. In general, a problem requiring m iterations on a single array will need
only k = m/L mrauons on a system of L-tuple arrays, assuming that m is an exact multipl

fmlL|
(Mo + W =1+ Y 2m- (k- 1)L)*w. Again, the summation term represents the time
k=1

necessary to feed input data of k iterations into the system. However, since only the first
Mo SUbarrays of the system are used during the k™ iteration, final results will emerge
from the bottom of the m™,,; subarray, instead of the last subarray. Therefore, the first term

of L. After each i* iteration, the length of partial results will be (2m — iL)?w. Hence, lhe
system will " compute CA'B+D of such a problem

L+ 1w =143 @m — & - DLYw = 7/3(kmn) + 3/2mn)+ 16(L) + (L + Dw — 1
k=1

steps. The first part represents the number of steps taken for input data of the last iteration to
traverse the system, and the summation term gives the number of steps to feed input data of
all iterations into the system. Final results in this case always emerge from the bottom of the
last array of the system. Thus, when m = L (as in the example used in Fig. 5), CA™B + D is
computed in a single pass with total processing time equal to (4m + I)n +w -1 = O(mn),
which is identical to the perfc of the d p systems from {2]. However, note
that the system of Fig. 5 is totally independent of problem’s size and the number of cells
used is smaller since the T arrays are eliminated.

of the th reflects the shorter path through which data has to traverse during
the k™ iteration.
in REFERENCES: (1] D. K. Faddeev and V. N. Fadd ds of Linear

Algebra, W. H. Freeman and Company, 1963, pp. 150-158 (2] H.Y.H. Chuang, G. He, "A
Versatile Systolic Array for Matrix Computations”, Proc. Intern. Symp. Comp. Arch., 1985,
Pp. 315 322, (3] H. V. D. Le, and M A. Perkowski, "A New General Purpose Systolic

for Matrix Comp . Proc. Intern. Conf. Comput. Inform., Toronto, May
23-29, 1989, pp. 182-185. [4] J. G. Nash and S. Hansen, "Modified Faddeev Algorithm for
Matrix Manipulation,” Proc. SPIE, Vol. 495, August 1984, pp. 39-46. (5] J. G. Nash, "A
Systolic/Cellular Computer Architecture for Linear Algebraic Operations,” Proc. Intern.
Conf. Robot. Autom., March 1985, pp. 779-784.

Whenm:s not an exact multiple ofL that is when m, 4 #0, the number of iterations §
d o bl = |m/L|, with the k™ iteration employing only the g
ﬁm Muod L subamys of the syswm The total processing time will be
2
PR J Kouuo 3o .
& apis 3491 0L g azpeﬁ
A 333spiazelen 2
o EEEYLE
H
v, ¥eeyyyd 8
S« ! 8
| 2 @
. 1 y 3
o L > ¢
% ~ = 2
s 3 -
Y T 2 PR SN // & i
//,
3 A Xz
- X X X Xoeo a
FE S0 -
- X E A Ree 8
S _J i
x | M
-] TR T - 12
L X X X XxXoo 13
: ->
= . s PR P >
. X X X Xoo o~
ol w A 33213z
5 -l " ddddaggs
d s > ciezaas |
M T v s3354348 |
M 1, - : SA04dD 3O BPIS 333 Of
E N > 4
8 4 n
2
5%
‘
E
3
7
H
- s
. L
P e £
» < e =
- . s L
D S0 <>
L g+ X% -
] I' s .48 .. ¥¥ocooco
4 L TS gy s s 5. -
d 533 5 gl g5, 883 ¥XXoooco |
v .
¥ 33 50X R By |
4 s Ze CE L., s o
¥ : E= AR CICINIR]
B < 583 XXX Xoooe
fas s
It fcooo
. . Lj'\ iy b 2g puo® 1g wouy w
Y dddddddd B : U
> - vasn g0 .
v 33834444 ! w5 149 01 F
> ' ¥
_____________ N
-
EEREYPYY; 1T
> - .
CEEEF Y H
® | 3
> 4 H
{ iigdags H
. . H
Ly UUUuUcago > | o= H
> rasasas: 1 Y™ H
Jddeddds 2 H s
~ : b v
>r ,,,,,,,,,,,,,] £]
L, Sdd a8 s {30~ ¥¥UEEYoo s
- L B B R N) 'Dlg%li'll -
UUVUUGJdG oo * - ° 2 oo0o :
> I
<2y Tprmomomooooo-- = :
ALEE T]
1T L EYERL Yoo |
= | S e e e e
. Pguosy prommmmemmeoos = ¥ G e e re s
a Gu Y E e Rt 0V RARARSENSERRRUNINNSRTARANINY S carenvnun

890

