
SIZE INDEPENDENT IMPLEMENTATION OF MATRIX

MATRIX ARCHITECTURE

Hai Van Dinh Lu, and Marek A. Perkowski

OPERATIONS ON TASA - A TWO-DIMENSIONAL ARRAY

Depcuvnent of Electrical Engineering. Ponland S m University,
Portland. OR 97207. tel. (503) 725-3806.

ABSTRAO

A Twodimensional Anay Systolic Architecture VASA) is a general-
p~lrposc parallel computa for solving a wide class of computationally inten-
sive problems. Application of TASA to implement Faddew algorithm for
classical matrix algebra operarions was shown in [3] . It is presented below
that this architecture is problem size independent for Faddev algorithm.

Nearly 75% of computer applications involve some kind of matrix manipulation. Faddev
algorithm [l] is a base of several new and highly parallel architectures for general purpose
matrix operations [2.4.3. In [3] an implementation of Faddev algorithm with TASA has
been inuoduced that has several advantages over the algorithms from [2,4.51. They include:
better pcrformance for smaller cost, easy reconfigurability. maximum overlaps between con-
secutive computations, processing of sparse arrays, and increased throughput for several
extensions to Faddeev algorithm. What is most imponant, TASA (Fig. 1) uses a mesh strut-
[we suitable for very many other CAD algorithms, in conuast to the well-known Faddev and
other matrix architectures that require various and exotic structures. It will be shown that
TASA is truly problem size independent, i.e. matrices which are arbiuarily large can be
easily decomposed to be processed by a Gxed size array.
Solving Size Independent Problems.
Faddeev’s algorihn calculates C A-’ B + D from

A B (2.1)
-C D
Since the underlying procedure to carry it out is ma& U’iangularization, any systolic imple-
mentauon of the algorithm should be based on a structure which can perform triangulariiw-
tion efficiently. The mangular systolic array developed by Gentleman and Kunp as a com-
mon platform for two different mangularization methods can execute both Gaussian elimi-
nation with neighbor pivoting or orrhogonal rriangularizorion. The array consists of two
types of cells: the boundary cells (represented by circles) and the internal cells (represented
by squares). Each cell stores a mtcroprogram. enabling it to interact with its neighbors in
such a way that a rriangularization procedure can be carried out. Changing the micropro-
g r a m ofthe cells (Fig. 2) allows TASA to execute different procedures. TASA reduces the
110 bandwidth requirement by half and the number of cells needed by more than one third,
comparing to [2,4,5]. Functionally, there are two types of cells. The first type consists of all
the diagonal cells (circles) of the array and the second type of all the non-diagonal cells
(squares). Depending on the actual processing phase. the array functions in one of the two
modes : the 7 (triangular) mode or the S (squnre) mode. When the array is in T mode, cells
of rows i where i = 1.2, .., w and columns j where j 2 i, form a triangular sub-array which is
based on Gentlemen and Kung’s array. It performs Gaussian elimnation wirh neighbor
pivoting on A, and ordinary Gaussian elimination on C. When in S mode, the entire array is
used to process B and D. In this mode. every cell of the array acts similarly to the internal
cell i.e. circular cells functionally become square cells. In order to switch the array from one
mode to another. it is only necessary to change the program of the diagonal cells.
The circular cell relies on three extemal conrrol signals CI, C2. and C4 (binary) for intemal
computation. Itself, it generates signal C3. All those binary signals are broadcasted locally
by a cell to its neighbors. The square cell passes received control signals C3. C4 to neigh-
boring cells in unchanged form. Cl controls the behavior of diagonal cells and consequently
selects the operarion mode of the array. When C1 is nue. the diagonal cells execute the por-
tion of their code that enables them to function like Kung’s boundary cells and the array is in
a T mode. Olhenvise, with Cl false, diagonal cells function l i e square cells. and the array
is in the S mode. Because of the strict timing required, mode switching should occur as
entries of the first row of B reach each cell, i.e. the switching sweeps across the array in
skewed waves as the transition between C and Bpows through the cells. This can be accom-
plished without the need to address separate control signals to each individual diagonal cell.
As the data flow changes from matrix A to matrix C, T mode processing in the array gradu-
ally switches from Gaussian elimination with pivoting to non-pivoting Gaussian eliminanon.
This event is srarted with C2, whose value is true for pivoting allowed and false for pivoting
not allowed.
Generated internally by diagonal cells when they are in T mode, C3 is the functional
equivalent of MO, of the boundary cell. It is thus used to direct square cells on the same
row to pivot incoming data when true. or not to pivot whenfalse. When switching between
the T and S modes of operation, it is essential that the X registers in each and every ceU ot
the array are cleared to zero before the new data elements arrive. If C4 is me. a cell will
clear its X register prior to receiving Xi,, from its nonhem neighbor. The X register remains
unchanged if C4 isfalse. A virtue of TASA is that it can readily handle problems of urbi-
trary size without requiring any architectural modification. while the throughput can be
improved p r ~ p o r t i ~ ~ l l y by adding any number of arrays to the existing system. This gives
the array a degree of flexibility that makes it truly useful in real life implementation: perfor-
mance is adjustable according to cost consnaint while versatility is preserved regardless of
expansion of any sue. For problems larger than array size, the input data flow shown in Fig.

CH2799-5/90/oooO/0889$01.00 0 1990 IEEE

1 IS decomposed into smaUer strips which are processed continuously by the array, one alter
another. The intermediate results from each strip will then be fed back to the array for
further processing. This vertical feedback and the horizontal feedback of the modihtion
factors constitute hvo dimensional feedback paths for the array.

Input Decomposition and Vertical Feedback Path.
With manices of size n where is m times the available bandwidth w , (2.1) can be

parallel)’ decomposed into 2m strips. each w in width and 2n in length as in [2] . Each strip
in tum consists of 2m w x w blocks which are of the same sue as the array.

For w = 2, n = 4 and m = 2, Fig. 1 shows an array with its input data flow decomposed
paraUely into four strips numbered f” Vl to V,. These strips are processed by the array
one after another continuously. Note that the strips of inmedia te results all have leading
blocks of zeros. The procedure begins with the array Set to T mode as V, arrives. While Vl
is being processed. a horizontal data stream consisting of values MO, and signals C3 is gen-
erated and moved rightwards into E,. Subsequently. the array is switched u) S mode for the
computation of the remaining snips. V2 u) V.. In this mode. the conrents of E , is recircu-
lated bad; 10 the array as vertical data of cach strip arrive, thus ensuring proper processing.
As shown in Eg. 1. each input strip V,, V,, V, generates an output strip ~ l) , @I), al), of
length (2m - 1)w = 6 that is p d e d by a block of zeroes as it emerges from the anay. In
Fig. 3. these intermediate results are stripped of their zero blocks and then fed back to the
anay where the above procedure is repeated. The final results. strips El and E I , come out
from the bottom of the array. each (2m - 2)w = 4 in length and likewise, is preceded by a
zero block. are stripped of their leading blocks of zeroes before re-entering the array.

Fig. 4 shows a mapping of input and output data flow of each iteration to array execu-
tion steps. ‘Ihe dash/dotted lines represent input strips, while the doaed lines represent the
output strips. Notice that input data flow of the second iteration is optimized, i.e. zero blocks
that exist between output strips of the first iteration are eliminated. In general. a w x w array
will solve a problem which is decomposed into 2m strips of length fmw and width w, in m
iterations. During the i* iteration, where i = 1,2, _. , m, the array eliminates the strip Vi (in
T mode) and reduces the length of each of the remaining strips by w (in S mode). This is
because each maining strip leaves behind one w x w block of data in the X registen as it is
being processed by the anay. and subsequently emerges with a w x w block of zeroes
preceding i t These zero blocks can be skipped in the next iteration to shorten processing
time without incurring any error. Final results after the mth iteration consists of m strips,
each mw in length and w in width.
The number of steps needed for the array of Fig. 1 to compute C A-’ B + D is:

(2 w - 1) + ~ (2 m - k + 1) 2 ~ = 7 / 3 (m Z n) + 3 / 2 (m n) + 1 / 6 (n) + 2 w - 1=0(m2n)
knl

Controls and Horizontal Feedback Path
In Fig. 4. values of C1. C2. and C4 necessary for the above example are illustrated at each
step. C3 is not shown since it is dependent on input data and generated on the fly by the
diagonal cells. For each control signal, a 1 represents the boolean value RUC and 0
represents fuke; when a signal remains unchanged from its previous value, a dash (-) enby is
entered. The pattern is as follow: for each iteration. C1 is true during the first strip and fake
throughout the remaining strips. C2 is RUC only where pivoting is allowed. i.e. the portion of
Ihe first strip which contains data elements of matrix A, and fulse anywhere else. C4 clears
the X registers of the array each time a new strip arrives. therefore it is true at the first step of
each strip and false elsewhere.
In general. an input strip with N blocks of vertical data will gcnenuc a comsponding N
blocks of horizontal modification factors pairs (MO, and C3); thus, the storage of the hor-
izontal data stream should be N blocks long so that timings for horizontal feedback are accu-
me, Becaw the array itself acts as a w x w block of storage, for each i* i d o n , the FIFO
queue E, should be (2m - i)w long. With m = 2 and w = 2, Figs. 13 show the conespond-
ing length of B for each iteration.
The buffer E , h u l d have the addressing capability such that its length can vary in units of
blocks. This permits the anay to solve problems of arbitrary size, as long as E , maximum
length is adequate for the largest of them.
Multiple Arrays Configurations.
Even though both have throughput time O(m*n), the parallel decomposition system fmm [2]
is slightly faster when compared to the array from Fig. 1. (Let us observe that the system
fmm [2] cannot solve problems with m > 4). Given a problem, the former will solve it with
steps less than the laner. This stems from its use of two subanays, where some overlaps in
processing am possible when the S array is working on a strip while the T array processes
intermediate results from the previous strip. Likewise, by using multiple arrays. the system
of Fig. 5 gives better throughput than the single array of Fig. 1 under the same VO constraint
This is because each subarray effectively replaces one iteration. with partial results from one
subarray immediately processed by the next. thereby maximizing concurrency while elim-
inating the corresponding iteration. Such a system will be called L - tuple anays system (L

889

= 2 in Fig. 5) , or L-subarrays system. Again w = 2, n = 4 and m = 2. The problem is solved
in one iteration. In Fig. 6. conimol and timing sequences of Fig. 5 subarrays an illustrated.
Because the input strips c1) of the second array are interspemd by blocks of zeras which
cannot be moved . buffer B Zq is required to have the same length as E 1,. instead of being
one block shorter. In general, a problem requiring m ituations on a single array will need
only k = m/L iterations on a system of L-tuple arrays. assuming that m is an wact multiple
of L. Afta each i" iteration. the length of partial results will be. (2m - iL)'w. Hence, the
system will compute CA-'B+D of such a problem in

nlL

k-1
(L + 1) ~ - 1 + C(2m - (k - I)L)'w = 7/3(bnn) + 3 /2 (m)+ 1/6(nL) + (L + 1)w - 1

steps. The 6rst part npnsents the number of steps taken for input data of the last itemion to
wvcrse. the system. and the summation term gives the number of steps to feed input data of
all iterations into the system. Final resulu in this case always e m q e from the bottom of the
last array of the system. Thus. when m = L (as in the example used in Fig. 5). CA-'B + D is
computed in a single pass with total prucessing time equal to (4m + I)n + w - 1 = O(mn).
which is identical to the performances of the decomposed systems from [2]. However, note
that the system of Fig. 5 is totally independent of problem's size and the number of cells
used is smaller sinee the T anays are eliminated.
When m is not an exx t multiple of L , char is when mdL f 0. the number of iterations
required to complcte the problem is k = ImlL I, with the k" iteration employing only the
6rst m,-L subarrays of the system. The total processing time will be

I".ILI
(m d L + 1)w - 1 + (2m - (k - 1)L)'w Agam. the summation tam represents the time

necessary to feed mput data of k itemons mu) the system. However. smce only the hrst
-L subanays of Ihc sysm are used dunng the k" itemon. final results wlll emerge
from the bottom of the m L L subanay. instead of the last subanay. Therefore, the 6rst tam
of the throughput equanon reflects the shom path through which data has to WverSe d u g
the. k* iteratim.
REFERENCES [l] D. K. Faddcev and V. N. Faddeeva. Computahonal Methods of L~near
Algebra. W. H. Freeman and C o m g ~ y . 1963. pp. 150-158. [2] H.Y.H. Chuang, G. He, "A
Versaule Systolic Array for Mamx Computahons". Proc Intern. Symp Comp Arch , 1985.
p p 315-322. [3] H. V. D. Le. and M. A. PerkowSLi, "A New General purpoSe Sysu)hC
Architecture for Maaix Computations". Proc. Intern. Cog. Compnpm. Inform.. Toronto, May
23-29. 1989. pp. 182-185. [4] J. G. Nash and S. Hansen, " M E d F a d k v Algonthm for
Ma& Maniplahon." Proc. SPIE. Vol. 495, August 1984. pp. 3946. [SI J. G. Nash, "A
Systolic/cellular Computer Archiuxm for Linear Algcbraic operations," Proc. Inlcrn.
Cog. Robot. Auom.. M u c h 1985. pp. T19-784.

I-I

"\
J
\

1 2::oooo; t : :oOoo

: 2 2 2 - 0 D - ; ;; j , , , O

, L

in

d a

r--
i ir: J , . ' * . .

" " U U d d

, I C 3 1
U U U U I

>w

r ---::-;
L-, "

>-
i .

U "

1 " ' :
Y x x X O O O O

I) !
U.O_'.? ? . * E ? p. O _ * p ?.*ALu y y 1.4 P. .A.. U U d.d <.E

